Fuzzy logic, deductive rules of inference and linguistic reasoning on knowledge base
نویسندگان
چکیده
منابع مشابه
Parallel Inference on a Linguistic Knowledge Base
This paper presents a possible solution for the text inference problem extracting information unstated in a text, but implied. The inference algorithm consists of a set of highly parallel search methods that when applied to the knowledge base find contexts of sentences that reveal information relevant to the text. Implementation, results and parallelism analysis are discussed. 1 Statement of th...
متن کاملModels, Rules, and Deductive Reasoning
We formulate a simple theory of deductive reasoning based on mental models. One prediction of the theory is experimentally tested and found to be incorrect. The bearing of our results on contemporary theories of mental models is discussed. We then consider a potential objection to current rule-theories of deduction. Such theories picture deductive reasoning as the successive application of infe...
متن کاملa comparison of linguistic and pragmatic knowledge: a case of iranian learners of english
در این تحقیق دانش زبانشناسی و کاربردشناسی زبان آموزان ایرانی در سطح بالای متوسط مقایسه شد. 50 دانش آموز با سابقه آموزشی مشابه از شش آموزشگاه زبان مختلف در دو آزمون دانش زبانشناسی و آزمون دانش گفتار شناسی زبان انگلیسی شرکت کردند که سوالات هر دو تست توسط محقق تهیه شده بود. همچنین در این تحقیق کارایی کتابهای آموزشی زبان در فراهم آوردن درون داد کافی برای زبان آموزان ایرانی به عنوان هدف جانبی تحقیق ...
15 صفحه اولReasoning with propositional knowledge based on fuzzy neural logic
Reasoning with propositional knowledge based on fuzzy neural logic" (1996). In this article, a new kind of reasoning for propositional knowledge, which is based on the fuzzy neural logic initialed by Teh, is introduced. A fundamental theorem is presented showing that any fuzzy neural logic network can be represented by operations: bounded sum, complement, and scalar product. Propositional calcu...
متن کاملDifferentiable Learning of Logical Rules for Knowledge Base Reasoning
We study the problem of learning probabilistic first-order logical rules for knowledge base reasoning. This learning problem is difficult because it requires learning the parameters in a continuous space as well as the structure in a discrete space. We propose a framework, Neural Logic Programming, that combines the parameter and structure learning of first-order logical rules in an end-to-end ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computer Science and Cybernetics
سال: 2016
ISSN: 1813-9663,1813-9663
DOI: 10.15625/1813-9663/11/3/8150